Herman is renovating his video arcade. The plan is to purchase new arcade machines, an advertising
banner and a gumball machine to attract new customers.
Your task is to determine the minimum number of daily customers that are needed so that the
arcade owner recovers all of his costs in the first year. arcade ow recovers all or his cosis in the irst year.
Here are the conditions to be respected when determining the average number of daily
customers required:
,

- The arcade is open 300 days of the year
, The average customer spends $\$ 5$ a visit
Use pi $=3.14$ in your calculations
The Total Number of Machines to Purchase
To get an idea of how many arcade machines to purchase, Herman researched the number of
machines at other arcades. The numbers are shown below.
$\begin{array}{lllllllllll}4 & 9 & 10 & 12 & 15 & 19 & 19 & 24 & 26 & 30 & 30\end{array}$ The number of machines used at the Pegasus Arcade will be which ever number is smaller, either the
mean or the second quartile (Q2), from the above data.
emainder will be dance machines

The Cost to Purchase the Machine
The cost of all the machines is based on partial linear equations.


Number of Machines

Pinball Machines


Dance Machines
$y=625 x+250$
where $x$ is the number of machines
$y$ is the cost in dollars

## Transporting the Machines

Not only will the machines be purchased, but they will cost a certain amount to be transported to the
Pegasus Arcade based on their total volume. Each dance machine (not shown below) has a volume - and


A standard arcade machine is composed of three prisms:

- The base is a cube: the perimeter of one
- The control
- The control panel is a right triangular based
- The screen is a rectangular based prism and

A freight train car must be rented to transport all of the purchased arcade machines. There are three options which depend on the total volume of the machines being transported.

|  | Total Volume to be Transported | Total Cost |
| :---: | :---: | :---: |
| Small Freight | Volume $=10 \mathrm{~m}^{3}$ | \$3000 |
| Medium Freight | $10 \mathrm{~m}^{3}<$ Volume $\leq 14 \mathrm{~m}^{3}$ | \$8000 |
| Large Freight | $14 \mathrm{~m}^{3}<$ Volume $\leq 18 \mathrm{~m}^{3}$ | \$ 12000 |

## The Pegasus Arcade Banner

A large banner will be placed on the front
of the building to attract customers.

- The area of the triangular part of ne banner is the same as the
area of the rectangular part of the

The cost is $\$ 125 / \mathrm{m}^{2}$

- All measurements are in metres



## The Gumball Machine

A gumball machine is made out of a ceramic Greek
god statue and a spherical ball of glass.

- The glass sphere has a volume of $14.13 \mathrm{~m}^{3}$

The glass costs $\$ 50 / \mathrm{m}^{2}$

- The cost of the statue and gumballs, not
including the glass sphere is $\$ 6587$


How many daily customers are needed so that the owner recovers all of his costs in the first year?

## Conditions required:

be respected when determining the average number of daily customers

- The arcade is open 300 days of the year
> The average customer spends $\$ 5$ a visit
Use $\mathrm{pi}=\mathbf{3} .14$ in your calculations

Marking Key

## The number of machines to be purchased

mean $=\frac{26+15+30+4+10+30+19+12+19+9+24}{11}$

$$
\begin{aligned}
& =\frac{198}{11} \\
& =18
\end{aligned}
$$

Second Quartile $($ Median $)=19$
Since the mean is less than the median, he will purchase a total of 18 machines
$1 / 3 \times 18=6$ Standard Arcade Machines
10 Pinball Machines
18-6-10 $=2$ Dance Machines

## The cost to purchase the machines

a) Standard Arcade Machines
$a=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$a=\frac{8950-250}{12-0}$
$a=\frac{8700}{12}$
$a=725$
$b=250$ from graph

Cost to purchase 6 standard arcade machines
$y=725 x+250$
$y=725(6)+250$
$y=4600$

Therefore the arcade machines cost $\$ 4600$.

## Transporting the Arcade Machines

## a) Volume of a standard arcade machine

Find the side length of the cube give the perimeter of a face is 3.2 m
$s=\frac{P}{4}=\frac{3.2}{4}=0.8 \mathrm{~m}$
Find the volume of the cube

$$
V=s^{3}=(0.8 m)^{3}=0.512 \mathrm{~m}^{3}
$$

Subtract 40 cm from 80 cm to get 40 cm for the triangular base's base The height of the triangle can be found using Pythagoras
$b^{2}=c^{2}-a^{2}$
$b^{2}=50^{2}-40^{2}$
$b=30 \mathrm{~cm}$
$V=A_{b} h$
$V=\frac{(0.3)(0.4)}{2} \times 0.8$
$V=0.048 \mathrm{~m}^{3}$

Total volume of an Arcade Machine $=0.512 \mathrm{~m}^{3}+0.8 \mathrm{~m}^{3}+0.048 \mathrm{~m}^{3}$ $=1.36 \mathrm{~m}^{3}$
b) Volume of a pinball machine
$A_{b}=l w$
. $w=\frac{A_{b}}{l}$

$$
=\frac{7700}{110}
$$

$=70 \mathrm{~cm} \leftarrow$ diameter of cy linder
$r_{\text {opinder }}=\frac{70}{2}$
$=35 \mathrm{~cm}$
$=0.35 \mathrm{~m}$

$$
\begin{aligned}
& V_{\text {gstuiur }} \\
& V=\pi r^{2} h / 2 \\
& V=\pi(0.35)^{2}(0.9) / 2 \\
& V=0.17309 m^{3} \\
& V_{\text {prisin }} \\
& V=A_{6} h \\
& V=(0.77)(0.45) \\
& V=0.3465 m^{3} \\
& V_{T}=V_{\text {chincr }}+V_{\text {pizim }} \\
& V_{T}=0.17309+0.3462 \\
& V_{T}=0.52 \mathrm{~m}^{3}
\end{aligned}
$$

## c) Total Volume of the Machines

## The Pegasus Arcade Banner

Area rectangle $=$ Area triangle
$(4 x-3)(2 x-4)=84-22 x$
$8 x^{2}-16 x-6 x+12=84-22 x$
$8 x^{2}-22 x+12=-22 x+84$
$+22 x-12+22 x-12$
$8 x^{2}$

$$
\frac{8 x^{2}}{8}=\frac{72}{8}
$$

$x^{2}=9$
$x= \pm 3$
Sub $\mathrm{x}=3$ back in to find the dimensions Area $=1 \times w=(4(3)-3) \times(2(3)-4)=18 \mathrm{~m}^{2}$

Times the $18 \mathrm{~m}^{2}$ by 2 to get total area $=36 \mathrm{~m}^{2}$
So total cost is $36 \mathrm{~m}^{2} \times \$ 125=\$ 4500$

Gumball Machine

## Radius of the gumball machine

| $V$ | $=\frac{4}{3} \pi r^{3}$ |
| ---: | :--- |
| $r$ | $=\sqrt{\frac{3 V}{4 \pi}}$ |
| $r$ | $=\sqrt{\frac{3 \cdot 14.13}{4 \cdot 3.14}}$ |
| $r$ | $=\sqrt{\frac{27}{8}}$ |
| $r$ | $=1.5 \mathrm{~m}$ |

## The surface area and cost of the glass sphere

$A=4 \pi r^{2}$
$A=4 \cdot 3.14 \cdot 1.5^{2}$
$A=28.26 \mathrm{~m}^{2}$
Cost $=28.26 \mathrm{~m}^{2} \cdot \frac{\$ 50}{\mathrm{~m}^{2}}=\$ 1413$

Total cost with the statue and gumballs
Cost $=\$ 1413+\$ 6587$
$=\$ 8000$

## Total Cost

|  | Cost (\$) |
| :---: | :---: |
| Arcade Machines | 4600 |
| Pinball Machines | 4000 |
| Dance Machines | 1500 |
| Transportation Fees | 12000 |
| Banner | 4500 |
| Bubble gum Machine | 8000 |
| Total Expenses | 34600 |

## The number of customers per day

= The total expenses $/$ ((\# of days open a year)(\$spending per Customer)
$=34600 / 300 / 5=23.1$
Therefore, 24 people are needed.

## Answer:

The minimum number of customers required per day is $\mathbf{2 4}$
$=6 \times 1.36 \mathrm{~m}^{3}+10 \times 0.52 \mathrm{~m}^{3}+2 \times 1.5 \mathrm{~m}^{3}$
$=8.16 \mathrm{~m}^{3}+5.2 \mathrm{~m}^{3}+3 \mathrm{~m}^{3}$
$=16.36 \mathrm{~m}^{3}$

Since the volume is between $14 \mathrm{~m}^{3}$ and $18 \mathrm{~m}^{3}$ this is a large freight, so $\$ 12000$.

